Masukkan soal...
Aljabar Linear Contoh
,
Langkah 1
Langkah 1.1
Susun kembali dan .
Langkah 1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.3
Pindahkan semua suku yang tidak mengandung variabel ke sisi kanan dari persamaan.
Langkah 1.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.3.2
Kurangi dengan .
Langkah 2
Nyatakan sistem persamaan tersebut dalam bentuk matriks.
Langkah 3
Langkah 3.1
Write in determinant notation.
Langkah 3.2
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 3.3
Sederhanakan determinannya.
Langkah 3.3.1
Sederhanakan setiap suku.
Langkah 3.3.1.1
Kalikan dengan .
Langkah 3.3.1.2
Kalikan dengan .
Langkah 3.3.2
Kurangi dengan .
Langkah 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Langkah 5
Langkah 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Langkah 5.2
Find the determinant.
Langkah 5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.2.2
Sederhanakan determinannya.
Langkah 5.2.2.1
Sederhanakan setiap suku.
Langkah 5.2.2.1.1
Kalikan dengan .
Langkah 5.2.2.1.2
Kalikan dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.3
Use the formula to solve for .
Langkah 5.4
Substitute for and for in the formula.
Langkah 5.5
Bagilah dengan .
Langkah 6
Langkah 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Langkah 6.2
Find the determinant.
Langkah 6.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 6.2.2
Sederhanakan determinannya.
Langkah 6.2.2.1
Sederhanakan setiap suku.
Langkah 6.2.2.1.1
Kalikan dengan .
Langkah 6.2.2.1.2
Kalikan dengan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.3
Use the formula to solve for .
Langkah 6.4
Substitute for and for in the formula.
Langkah 6.5
Bagilah dengan .
Langkah 7
Sebutkan penyelesaian untuk sistem persamaan.